# Aims of therapy in relapsed and refractory myeloma

Matthew Jenner

**UKMS Spring Day** 

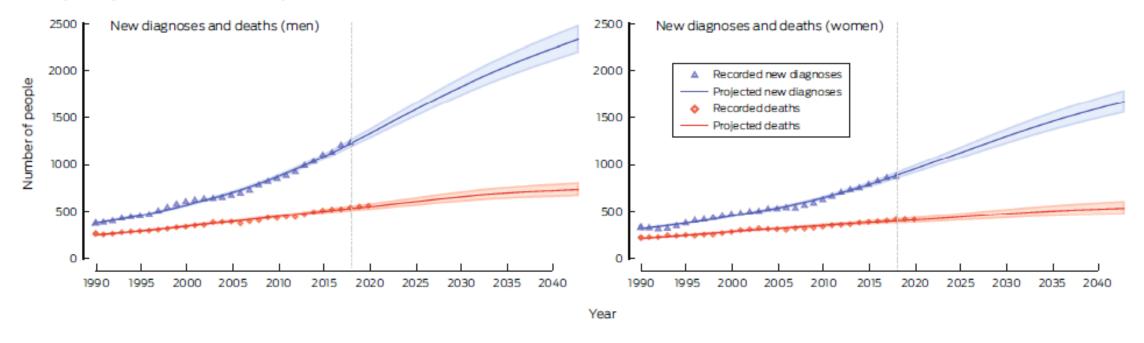
19th March 2025



#### Synopsis

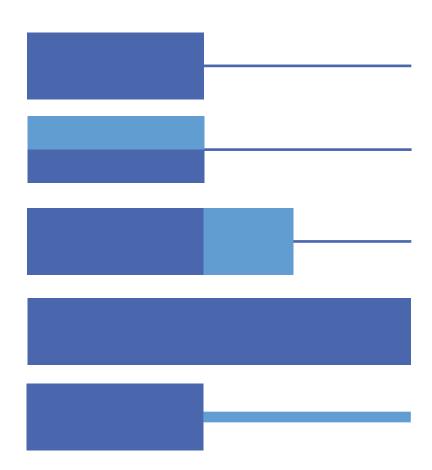
- Context
- Understanding
  - Your patient's disease
  - Your patient's treatment
  - Your patient
- When to treat
- What to treat with




#### Improved outcomes in myeloma

- Ageing but fitter population
  - Increasing number of people suitable for treatment
- More treatments
  - Numerous NICE/SMC approvals
- More effective treatments
  - Only approved if better than previous
- Manageable toxicities
  - Can remain on treatment longer




#### Improved outcomes with myeloma

6 Historical and projected (2019–2043) numbers of new diagnoses with and deaths from multiple myeloma, and of people living with multiple myeloma, Australia, by sex\*



## Changing patterns of treatment

- Fixed duration therapy
  - Planned duration and stop at that time point, e.g.
    - VCD
- Augmentation
  - Addition of drugs to standard schedule, e.g.
    - Daratumumab to VTD during induction
- Consolidation
  - Fixed block of treatment aimed at deepening response, e.g.
    - Dara-VTD post autologous stem cell transplant
- Continuous therapy
  - Continuous therapy (same drugs) e.g.
    - Elranatamab, teclistamab
  - Maintenance (switch to different drug) to maintain tumour control, often as single agent, e.g.
    - Lenalidomide
    - DVd
  - Typically until progression or toxicity





### **Impact**

- Patient perspective:
  - Better longer term outcomes
  - Move to continuous therapy for almost all RRMM regimens
  - No treatment free interval
- Service perspective
  - Cost
  - Capacity
  - Need to maximise efficiency



#### **Definitions**

- Relapsed and refractory
  - Progressed on or within 60 days of therapy
  - Virtually all myeloma patients are both relapsed AND refractory
  - Some may not be refractory to all drugs
    - E.g. second line DVD may still be bortezomib sensitive
- Relapse
  - Clinical relapse
    - New CRAB criteria
    - new SLiM criteria?
  - Progression
    - Rise in paraprotein by 25% and minimum of 5 g/L

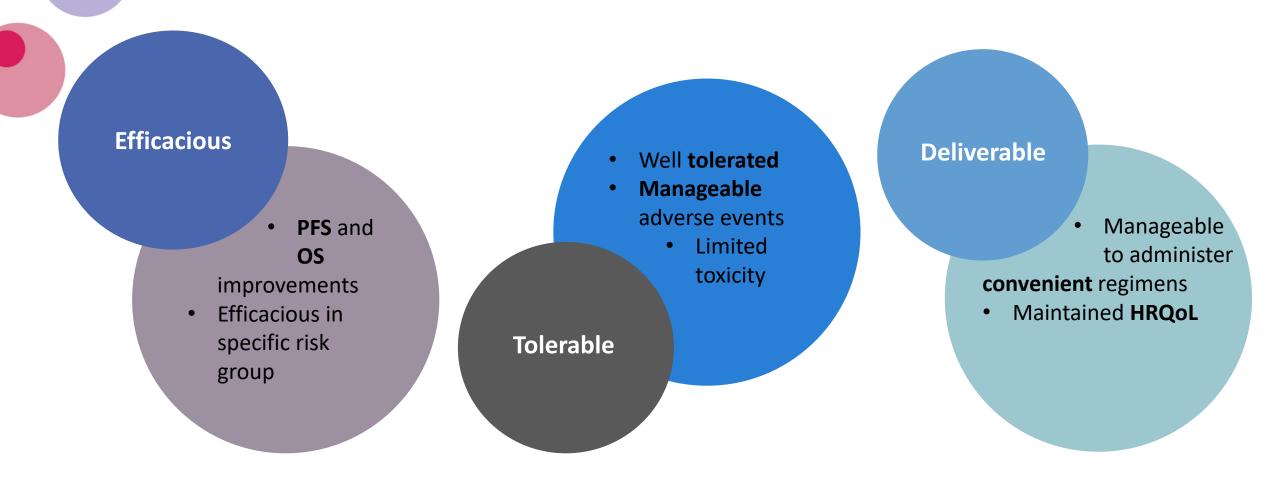


### Newly diagnosed vs relapsed myeloma

|                         | NDMM    | RRMM                      |
|-------------------------|---------|---------------------------|
| Clinical presentation   | Υ       | Y – diagnosis and relapse |
| Prognostic factors      | Some    | Y – diagnosis and relapse |
| Co-morbidities          | Υ       | Υ                         |
| Efficacy of treatment   | N       | Υ                         |
| Toxicities of treatment | N       | Υ                         |
| Patient priorities      | Perhaps | Υ                         |
| Support infrastructure  | Perhaps | Υ                         |
| Criteria for treatment  | Υ       | N                         |



# Aims of therapy in relapsed and refractory myeloma




#### Aims

- Identify and prevent potential morbidity from progressive disease
- Achieve long term disease control
- Minimise toxicity from treatment



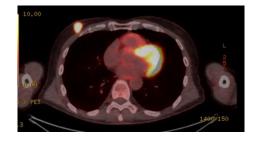
• There are three main objectives in myeloma treatment:





#### Understanding the disease

- Clinical presentation
  - At diagnosis
    - Myeloma-defining criteria e.g.
      - Bone disease/AKI/hypercalcaemia vs. anaemia or abnormal SFLC ratio
    - Nature of initial presentation
      - Florid presentation vs. MGUS/SMM gradual progression
    - Prognostic factors e.g.
      - Genetics
      - Imaging including extramedullary disease
















### Understanding the disease

- Current status
  - Nature of progression
    - On treatment or off treatment
    - Pace of progression
    - Evolving or step-wise?
  - Functional cross-sectional imaging
    - Consider serial imaging for occult clinical relapse
  - Clinical symptoms
  - Bone marrow for clonal evolution
  - Very limited evidence base to inform decisionmaking and frequency of monitoring
- Evaluation of need to intervene or not
  - May not be a need to intervene immediately









### Understanding the treatment

- What treatment was received
  - Which backbone agents, alone or in combination?
    - IMiD
    - Pl
    - MoAb
    - Alkylator
    - Steroid
    - T-cell engager
  - On or off treatment?
    - Duration of time since treatment
      - E.g. high dose melphalan <2 years or <3 years if maintenance?
  - Duration of treatment received
  - Duration of response
  - At what prior line was each drug/combination given in?





### Understanding the treatment

- Toxicities of treatment:
  - Transient, reversible e.g.
    - Cytopenias
    - Infection
  - Permanent e.g.
    - neuropathy
  - Potential class effect e.g.
    - Rash
    - VTE
    - Steroids
- Likely benefit vs. risks of proposed treatment:
  - Risk-benefit ratio may change over time in either direction
    - More or less prepared to consider certain side effects







## Understanding your patient

- Co-morbidities
  - Renal
  - Cardiac
  - Bone marrow reserve
    - Typically diminishes with multiple lines of therapy
    - Need to consider secondary MDS in heavily pre-treated
    - ?potential role for back up autologous stem cells
- Frailty
- Practicalities and mode of treatment delivery
  - Oral
  - IV/SC
  - Home care options
- Patient expectations

















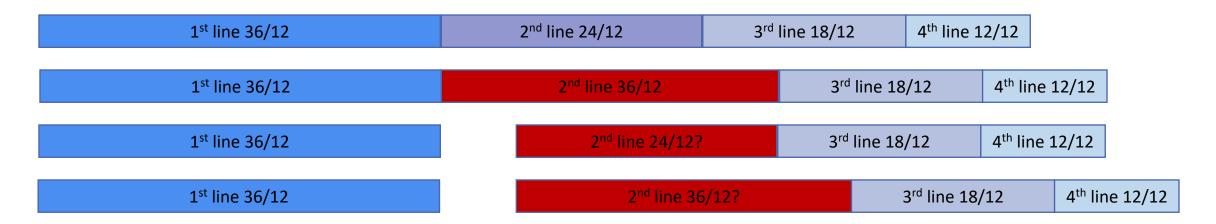
#### Patient expectations - observations

- Reality of situation at relapse vs. previous successful therapy
  - Important to re-establish understanding
- Diminishing number of treatment options
  - Standard of care vs. experimental or clinical trial options
- Option of no active treatment
- Parallel planning and involvement of palliative care
- Impact of ongoing treatment
  - Time and logistics
  - Expense
  - Quality vs. quantity of life



# When to start or change treatment?




#### Options at apparent progression

- True clinical progression or not?
  - Evolving pattern
  - Fluctuation
  - Apparent progression and stability
- Options
  - Continue
  - Switch therapy
  - Local radiotherapy
  - Augmentation
    - Optimisation of dosing
    - Re-introduction of steroids
    - Addition of cyclophosphamide



#### Early or later treatment switch?

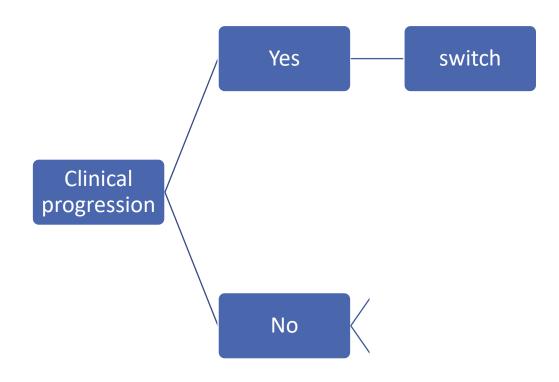
- Limited data to inform decision-making
- Concepts:
  - Earlier treatment targets evolving clones?
  - Earlier treatment may induce more clonal evolution?







IgGL t(11;14) Lytic bone disease



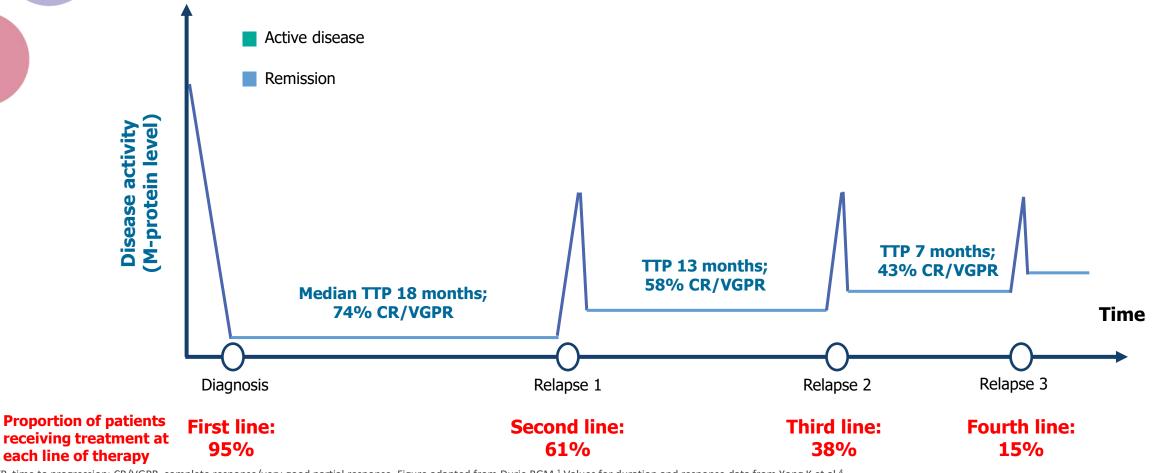

#### Paraprotein (g/L)



#### Stick or twist?








# What to treat with?



Relapse is usually associated with diminishing duration and depth of response over time  $^{1-4}$ 

#### Multiple myeloma disease course



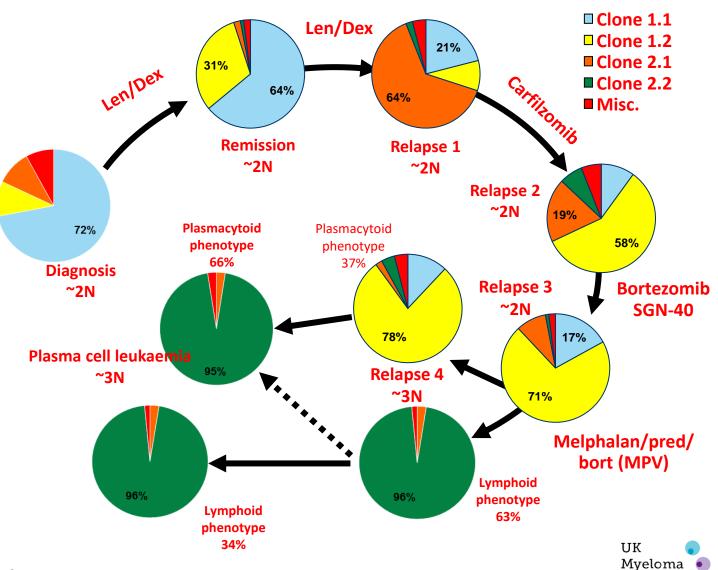
<sup>•</sup>TTP, time to progression; CR/VGPR, complete response/very good partial response. Figure adapted from Durie BGM.¹ Values for duration and response data from Yong K et al.⁴



<sup>•1.</sup> Durie BGM. Concise review of the disease and treatment options. Multiple myeloma, cancer of the bone marrow. International Myeloma Foundation, 2016. Available at: www.myeloma.org/sites/default/files/images/publications/UnderstandingPDF/concisereview.pdf (accessed March 2017); 2. Kumar SK et al. Mayo Clin Proc 2004; 79: 867–874; 3. Moreau P & Touzeau C. Am Soc Clin Oncol Educ Book 2015: e504–e511; 4. Yong K et al. Br J Haematol 2016; 175: 252–264.

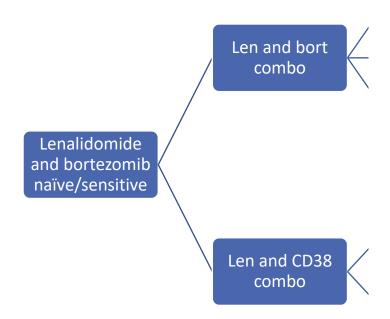
#### What to treat with

- Aim for best available therapy next
  - Best may not always be longest PFS if toxicity or practicalities are paramount
  - Always consider clinical trial options
  - Better therapies generally more efficacious if used in earlier line
    - E.g. 50% improvement compared with current line of therapy:


| 1 <sup>st</sup> line 36/12 | 2 <sup>nd</sup> line 24/12 | 3 <sup>rd</sup> line 18/1  | L2 | 4 <sup>th</sup> line 12/12 |                           |
|----------------------------|----------------------------|----------------------------|----|----------------------------|---------------------------|
|                            |                            |                            |    |                            |                           |
| 1st line 36/12             | 2 <sup>nd</sup> line 24/12 | 3 <sup>rd</sup> line 18/12 |    | 4 <sup>th</sup> line 18/12 |                           |
|                            |                            |                            |    |                            |                           |
| 1 <sup>st</sup> line 36/12 | 2 <sup>nd</sup> line 36/12 |                            | 3  | rd line 18/12              | 4 <sup>th</sup> line 12/1 |






#### Clonal tides

- The summarised results of 8 different FISH assays are shown to indicate the relative abundance of each clone defined by aCGH at the 5 time points studied
- Minor drug resistance clone lethal
- Role for multi-drug therapy
- Rationale for understanding disease at a subclonal level
- Immediate prior exposure is probably more important than lines of therapy or historical exposure



Society

#### Treatment choice based on prior exposure





# Treatment choice based on prior exposure

|              | Lenalidomide naïve/sensitive Bortezomib naïve/sensitive | Lenalidomide<br>refractory Bortezomib<br>naïve/sensitive                  | Bortezomib refractory<br>Lenalidomide naïve or<br>sensitive | Len and bort refractory                                        | Triple class exposed                                            |
|--------------|---------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|
| Preferred    | Dara-RD<br>KRD<br>Ixa-RD<br>Dara-VD<br>Elo-RD           | Dara-VD PVD Dara-PD Dara-KD Isatux-KD Isatux-PD KD Elo-PD Bela-PD Bela-VD | Dara-RD<br>KRD<br>Elo-RD<br>Ixa-RD<br>Isatux-PD<br>Bela-PD  | Isatux-PD<br>Isatux-KD<br>Bela-PD                              | Ide-cel Cilta-cel Teclistamab Elranatamab Bela-PD Talquetamab   |
| Alternatives | CRD<br>CVD<br>KCD<br>RD<br>KD<br>VD                     | CVD<br>VD<br>Selinexor-Vd                                                 | CRD<br>RD                                                   | KD CPD Dara-PD Dara Elo-PD Pano-VD Pano-VTD Alkylators+/- thal | Belantamab Pano-VD Alkylators +/- thal Dara-KD Elo-PD Selinexor |



#### Conclusions

- Decision-making in relapsed and refractory myeloma complex
- Key principles
  - Understand your patient's disease, treatment response and preferences
  - Consider whether clinical progression or not and risk of developing end organ damage
    - Switch, augment or stick
- Low threshold for functional cross-sectional imaging
- Consider bone marrow primarily for clonal evolution
- Balance that against what is actually available!

