Is there a role for MRD testing in the UK?

Karthik Ramasamy

Associate Professor of Haematology and Consultant Haematologist University of Oxford and Oxford University Hospitals NHS FT

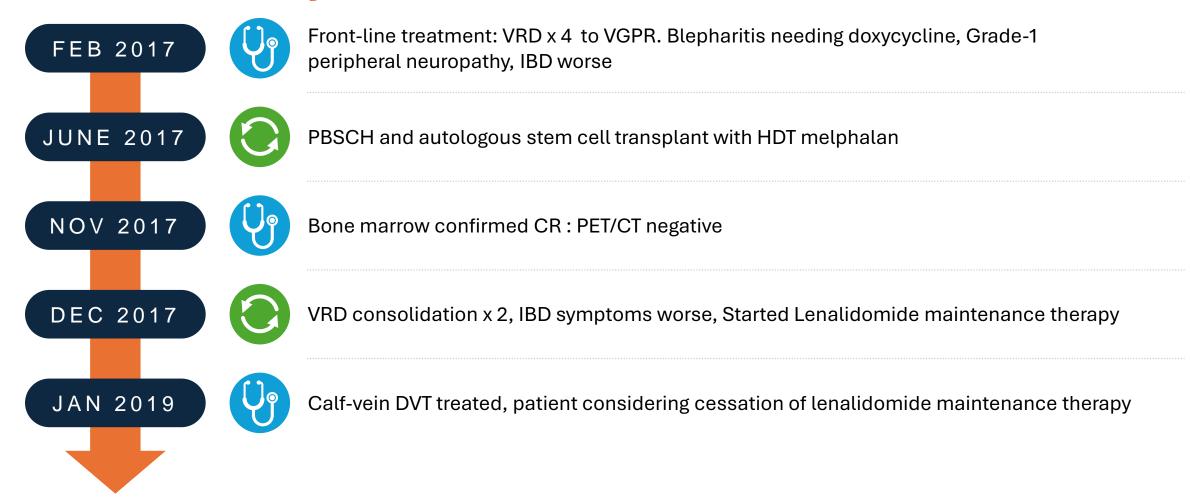
Overview

- Case study
- MRD testing FAQ
- MRD landmarks
- MRD testing in UK practice current and future

Straw poll: I would do MRD test in MM patient if......

- ✓ Iam able to change treatment based on the results
- I know my patient is functionally cured
- Iam able to prognosticate treatment outcomes in the medium term 2-3 years
- Iam able to access these tests routinely in clinical practice

Case study of a patient with Newly diagnosed transplant eligible MM


- 62-year-old lady, lives between UK and Italy
- PS 0, Board-level executive of a large corporation
- PMH: IBD, DVT
- Presented with bone pain and fatigue



- Date diagnosed: February 2017
- IgG k MM
- Hb 92 g/l
- L4 fracture
- Hyperdiploidy on MM FISH
- Normal renal function, calcium
- ISS-2

Case study 1: treatment

Treatment choices

- 1. Use MRD to guide treatment decision
- 2. Low-dose lenalidomide maintenance
- 3. Alternative drugs for maintenance
- 4. Treatment-free monitoring

MRD FAQ's

Questions	Answers
Should MRD be the new CR	Potentially, as new definitions of CR-MRD positive and CR- MRD negative are emerging
Is MRD testing for prognostication?	Yes MRD negativity consistently improves clinical outcomes
What is the right threshold for MRD testing	IMWG guidance 10 ⁻ 5
What MRD test should I use	Not specified by IMWG
When should I test for MRD	Suspected CR and yearly provided remains in CR biochemically
Is one time MRD testing enough for my patients?	Helpful to prognosticate
Does early MRD negativity equate to improved clinical outcomes?	Need more data
Does sustained MRD negativity mean cure?	Need more data
Can I use MRD tests results to make clinical decisions?	RADAR, MIDAS, PERSEUS, MASTER

MRD landmarks

MRD Measurement Techniques to Achieve International Myeloma Working Group (IMWG) Criterion of ≤10⁻⁵

Current clinical practice guidelines include IMWG criteria for MRD^{1,2}

For patients achieving CR, each treatment stage (induction, intensified therapy/ASCT, consolidation, and maintenance) should be followed by MRD assessment to assess response, according to IMWG criteria

Recommended MRD assessment methods, with a minimum sensitivity of 1 in 10⁻⁵ nucleated cells²

NGS

Flow cytometry*/NGF

- The IMWG defines MRD as the persistence or reemergence of tumour cells down to 1 in at least 10⁵ normal cells (MRD at ≤10⁻⁵)²
- ASO RQ-PCR, NGS, MFC* and NGF achieve this sensitivity³

- Each method has advantages and limitations³
- Only NGS and NGF achieve high sensitivity of 10⁻⁶
- ASO RQ-PCR is well-standardised but has low applicability, while NGS produces the highest sensitivity and applicability³

*Conventional MFC has sensitivity of 10⁻⁴, whereas improved color combinations now achieve sensitivity of up to 10⁻⁵.

ASCT: autologous stem cell transplant; ASO RQ-PCR: allele-specific oligonucleotide real-time quantitative polymerase chain reaction; CR: complete response; MFC: multiparameter flow cytometry; NGF: next-generation flow; NGS: next-generation sequencing.

1. Moreau P, et al. Ann Oncol. 2017;28:iv52-iv61;

2. Kumar SK, et al. Lancet Oncol. 2016;17:pp. 53284346

3. Bai Y, et al. Br J Haematol.

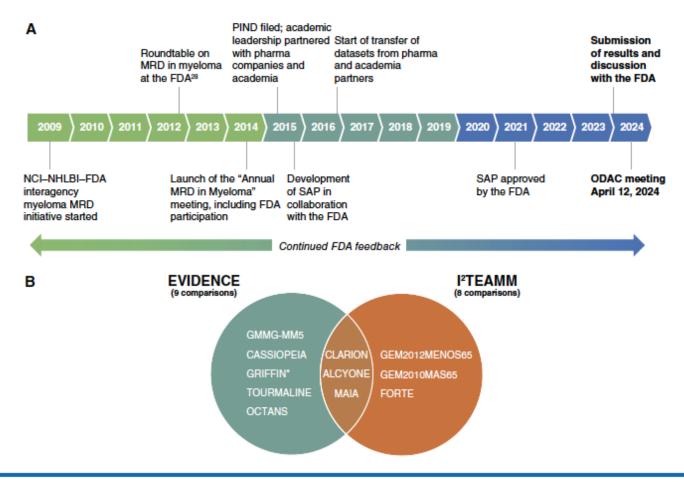


Figure 2. A, Timeline of FDA initiative and EVIDENCE meta-analysis on MRD in myeloma. B, Studies analyzed in the EVIDENCE meta-analysis and I²TEAMM study in NDMM. Registry identifiers of each trial are as follows: ALCYONE (NCT02195479), CASSIOPEIA (NCT02541383), CLARION (NCT01818752), FORTE (NCT02203643), GEM2010MAS65 (NCT01237249), GEM2012MENOS65 (NCT01916252), GMMG-MM5 (EudraCT number 2010-019173-16), GRIFFIN (NCT02874742), MAIA (NCT02252172), OCTANS (NCT03217812), and TOURMALINE (NCT01564537).*Included in 9-month MRD-negative CR analysis for I²TEAMM and sensitivity analysis in EVIDENCE. NHLBI, National Heart, Lung, and Blood Institute; PIND, pre-IND.

Strategic implications of quadruplet regimens: MRD-adapted therapy High rates of MRD negativity, with or without ASCT

Study	Induction/ Consolidation	ASCT	MRD-neg	PFS	os
GRIFFIN ¹	RVd x 6*	Yes	30%	4-yr 70.0%	4-yr 92.2%
GMMG-HD7 ²	RVd x 3 [§]	No	35.6%	NR	NR
CEPHEUS ³	RVd x 8 + Rd	No	39.4%	52.6 mos	NR
IMROZ ⁴	RVd x 8 + Rd	No	43.6%	5-yr 45.2%	5-yr 66.3%
PERSEUS ⁵	RVd x 6	Yes	47.5%	4-yr 67.7%	NR
GMMG-HD7 ⁶	RVd x 3 [§]	Yes	47.7%	NR	NR
FORTE ⁷	KRd x 12 [‡]	No	56%	4-yr 56%	4-yr 85%
FORTE ⁷	KRd x 8 [‡]	Yes	62%	4-yr 69%	4-yr 86%
ISKIA ⁸	KRd x 8	Yes	67%	1-yr 95%	NR

Study	Induction/ Consolidation	ASCT	MRD-neg	PFS	os
GMMG-HD7 ²	Isa-RVd x 3 [§]	No	50.1%	NR	NR
IMROZ ⁴	Isa-RVd x 8 + Isa-Rd	No	58.1%	5-yr 63.2%	5-yr 72.3%
CEPHEUS ³	Dara-RVd x 8 + Dara-Rd	No	60.9%	54-mo 68.1%	NR
GRIFFIN ¹	Dara-RVd x 6*	Yes	64%	4-yr 87.2%	4-yr 92.7%
GMMG-HD7 ⁶	Isa-RVd x 3 [§]	Yes	66.2%	NR	NR
MANHATTAN ⁹	Dara-KRd x 8 [‡]	No	71%	1-yr 98%	1-yr 100%
PERSEUS ⁵	Dara-RVd x 6	Yes	75.2%	4-yr 84.3%	NR
ISKIA ⁸	Isa-KRd x 8	Yes	77%	1-yr 95%	NR
GEM2017FIT ¹⁰	Dara-KRd	No	79%	NR	NR

High rates of MRD-negative responses and very promising outcomes

Either in conjunction with ASCT or as ASCT-sparing approaches

Tolerable mAb-based quadruplet regimens followed by immune therapy-based maintenance

MRD-negative rates higher with mAb-based quadruplet regimens, PFS appears longer

^{1.} Voorhees PM, et al. Lancet Haematol 2023;10(10):e825–37. 2. Goldschmidt H, et al. Lancet Haematol 2022;9(11):e810–21.

^{3.} Usmani SZ, et al. IMS Annual Meeting, 2024, abstract #OA-63. 4. Facon T, et al. N Engl J Med 2024;doi: 10.1056/NEJMoa2400712.

^{5.} Sonneveld P, et al. N Engl J Med 2024;390(4):301–13. 6. Raab MS, et al. HemaSphere 2024;8(S1):218–220.

^{7.} Gay F, et al. Lancet Oncol 2021;22(12):1705–20. 8. Gay F, et al. Blood 2023;142(suppl 1):abstract 4.

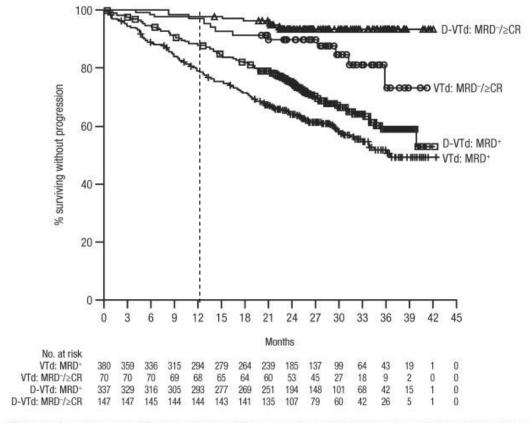
^{9.} Landgren O, et al. JAMA Oncol 2021;7(6):862-8. 10. Mateos M-V, et al. Blood 2023;142(suppl 1):abstract 209.

Role of MRD in UK practice

Prognostication

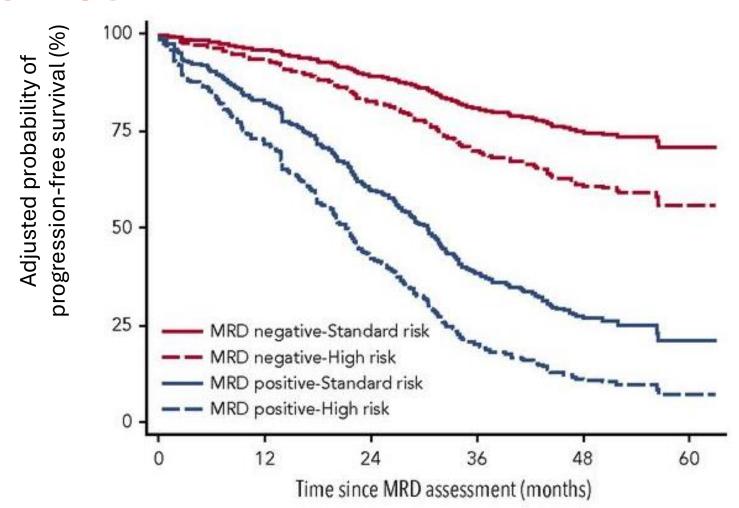
Duration of therapy

Deferring ASCT



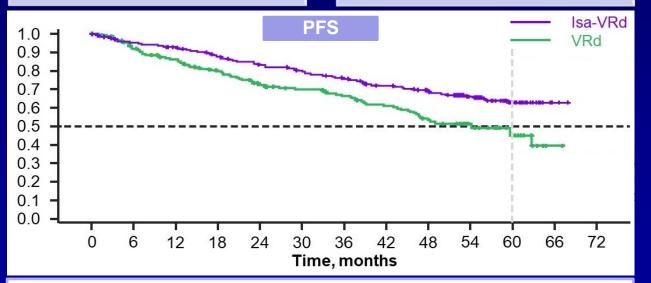
Implications to current practice

Opportunity to limit duration of therapy

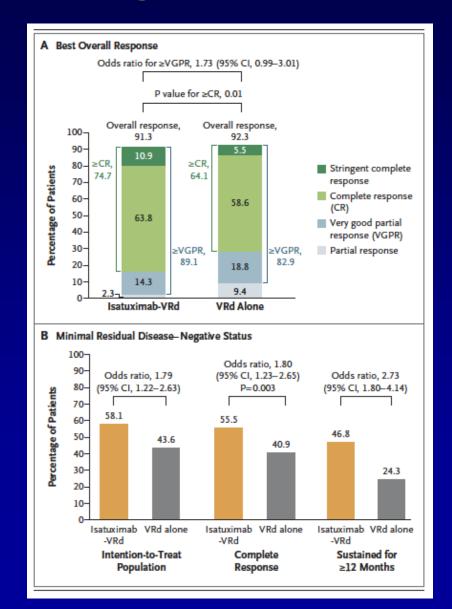

Figure: Landmark PFS analysis of pts progression-free at 1 year post-induction for pts who achieved 1 year sustained MRD negativity and pts who did not by treatment group

PFS, progression-free survival; pts, patients; MRD, minimal residual disease; D-VTd, daratumumab/bortezomib/thalidomide/dexamethasone; VTd, bortezomib/thalidomide/dexamethasone; ≥CR, complete response or better.

IFM 2009: Limited duration Lenalidomide maintenance MRD Negativity Improves Outcomes with MM


Isa-based quadruplets also demonstrating benefit in non-ASCT setting IMROZ: Isa-RVd vs RVd in transplant-ineligible NDMM patients

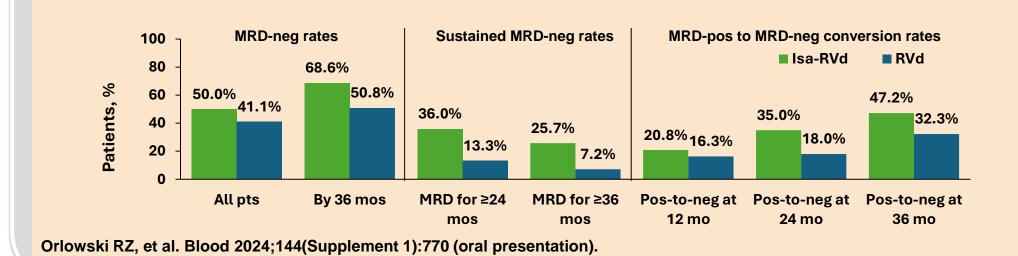
IMROZ study design (NCT03319667)


- 3:2 randomization to Isa-RVd vs RVd
- Induction: 4 x 6-week cycles of Isa-RVd/RVd
- Maintenance: 4-week cycles of Isa-Rd/Rd until PD/toxicity
- Primary endpoint: PFS

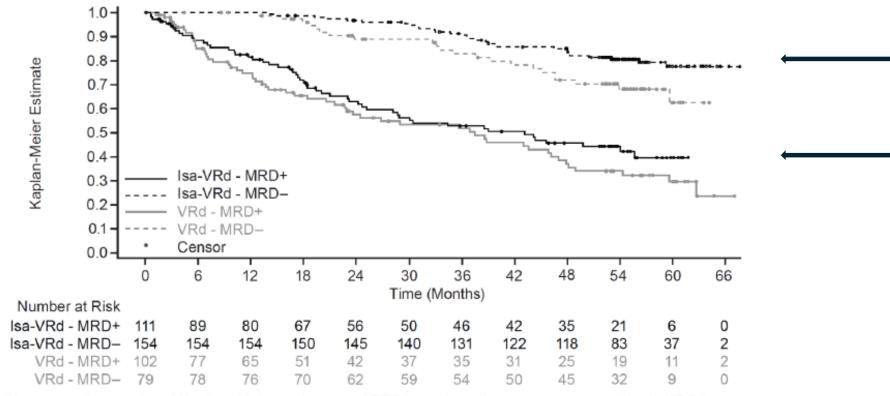
446 NDMM patients randomized, Isa-RVd vs RVd 265 vs 181

- Median age 72 vs 72 years, 26.0% vs 31.5% aged ≥75 years
- 6.8% vs 3.3% EMD
- 10.9% vs 11.6% R-ISS stage III
- 15.1% vs 18.8% high-risk cytogenetics
- 35.8% vs 38.7% 1q21+

- · Median follow-up 59.7 months
- 5-year PFS 63.2% vs 45.2%, HR 0.60
- Consistent benefit across subgroups, HR in high-risk cytogenetics 0.97



1. Facon T, et al. N Engl J Med 2024;391(17):1597-609.

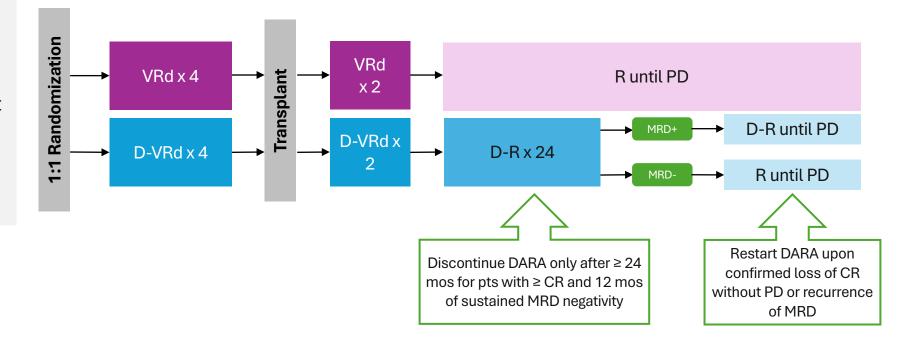

Updated analysis of MRD-neg (10⁻⁵) rates

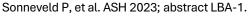
MRD dynamics based on 1610 MRD assessments over 5 years

PFS based on MRD status

Shown are the results of Kaplan–Meier estimates of PFS based on disease assessment by the IRC by MRD status among patients in the ITT population.

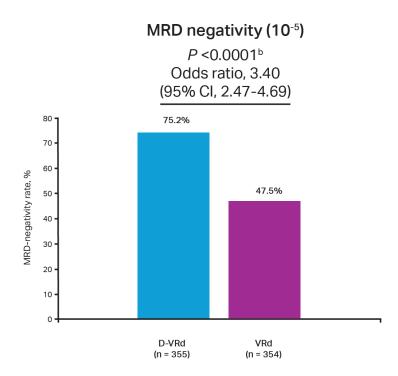
Implications to future practice

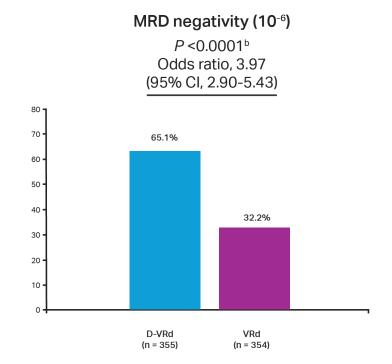

PERSEUS: Study Design – Opportunity to modify maintenance therapy


Study Design:

MRD Aims

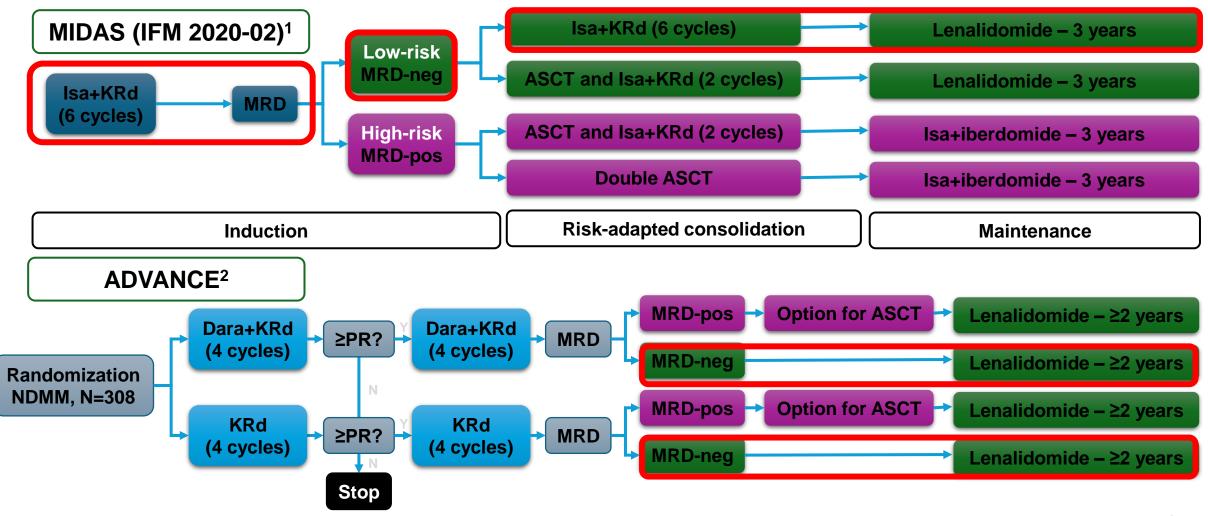
- 1. 1°: PFS
- 2. 2°: Overall MRD-negativity rate at 10^{-5} in patients with \geq CR
- **3. Exploratory**: MRD-negativity rate at 10⁻⁶





PERSEUS: Overall and Sustained MRD-negativity Rates

• LBA-1: Phase 3 Randomized Study of Daratumumab (DARA) + Bortezomib, Lenalidomide, and Dexamethasone (VRd) Versus Vrd Alone in Patients (Pts) with Newly Diagnosed Multiple Myeloma (NDMM) Who Are Eligible for Autologous Stem Cell Transplantation (ASCT): Primary Results of the Perseus Trial



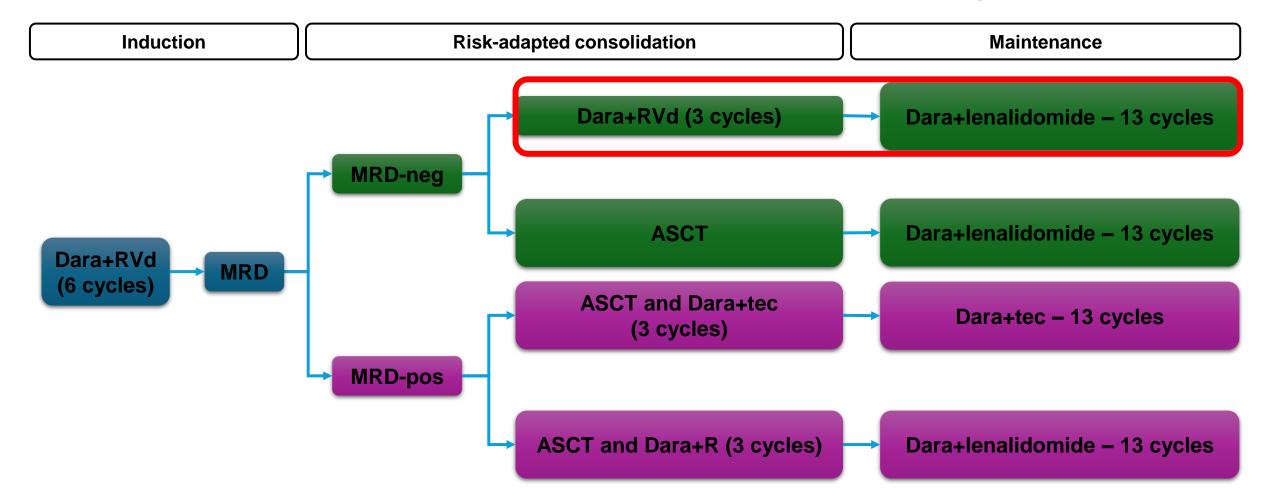
MRD-adapted therapeutic approaches with CD38 mAb-based quadruplets – MIDAS (IFM 2020-02) / ADVANCE (University of Miami) – Deferred ASCT

^{1.} Perrot A, et al. COMy 2021. https://clinicaltrials.gov/ct2/show/NCT04934475.

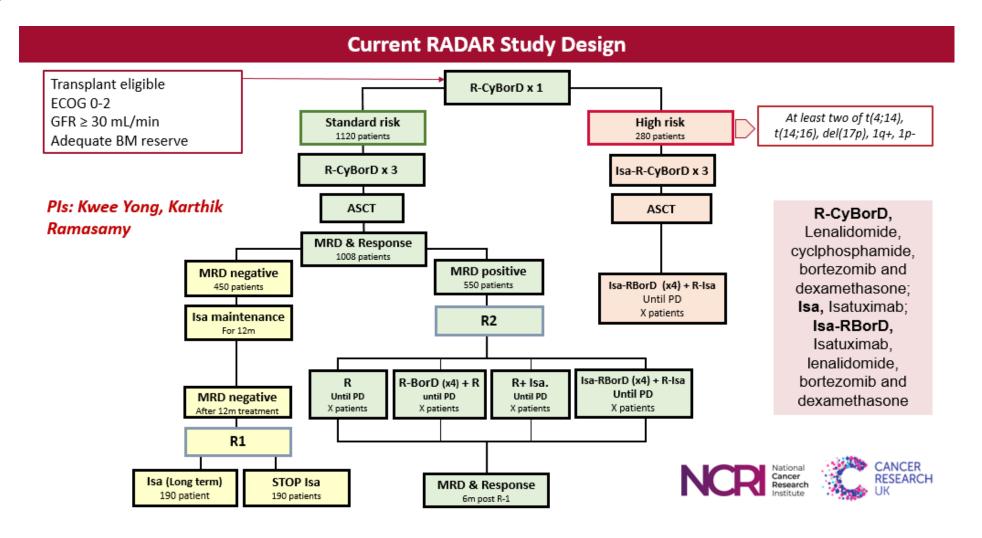
^{2.} Landgren O, et al. Blood 2023;142(suppl 1):abstract 3392.

Isa-KRd induction in NDMM

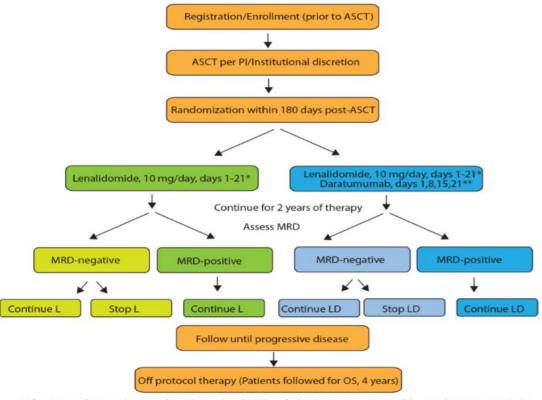
MIDAS phase 3 trial: MRD-adapted therapy after Isa-KRd


- N=791 transplant-ineligible NDMM patients
- MRD-neg rate: 63% (10⁻⁵), 47% (10⁻⁶)

Perrot A, et al. Blood 2025;doi:10.1182/blood.2024026230.


MRD-adapted therapeutic approaches – MASTER-2 (University of Alabama at Birmingham)

RADAR trial: Opportunity to prospectively confirm MRD response driven therapy



MRD Directed maintenance study

DRAMMATIC STUDY SWOG1803/BMT CTN 1706: Using Minimal Residual Disease to Direct Therapy Duration

Treatment/Schema

^{*}After 3 months, may be raised to 15 mg/day if ANC and platelet counts acceptable; non heme tox to Gr 0-1 **Dosing will be changed to monthly dosing after month 2

Treatment choices

- 1. Use MRD to guide treatment decision
- 2. Low-dose lenalidomide maintenance
- 3. Alternative drugs for maintenance
- 4. Treatment-free monitoring

Panel discussion

